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Abstract. Trusted Space Autonomy is challenging in that space sys-
tems are complex artifacts deployed in a high stakes environment with
complicated operational settings. Thus far these challenges have been
met using the full arsenal of tools: formal methods, informal methods,
testing, runtime techniques, and operations processes. Using examples
from previous deployments of autonomy (e.g. the Remote Agent Experi-
ment on Deep Space One, Autonomous Sciencecraft on Earth Observing
One, WATCH on MER, IPEX, AEGIS on MER, MSL, and M2020, and
the M2020 Onboard planner), we discuss how each of these approaches
have been used to enable successful deployment of autonomy. We next fo-
cus on relatively limited use of formal methods (both prior to deployment
and runtime methods). From the needs perspective, formal methods may
represent the best chance for reliable autonomy. Testing, informal meth-
ods, and operations accommodations do not scale well with increasing
complexity of the autonomous system as the number of text cases ex-
plodes and human effort for informal methods becomes infeasible. How-
ever from the practice perspective, formal methods have been limited
in their application due to: difficulty in eliciting formal specifications,
challenges in representing complex constraints such as metric time and
resources, and requiring significant expertise in formal methods to apply
properly to complex, critical applications. We discuss some of these chal-
lenges as well as the opportunity to extend formal and informal methods
into runtime validation systems.

Keywords: Verification and Validation · Flight Software · Space Au-
tonomy · Artificial Intelligence.

1 Introduction

From the dawn of the space era, software has played a key role in the advance-
ment of spaceflight. In the Apollo program, flight software in the Apollo Guid-
ance Computer [16] enabled the astronauts to safely land on the Moon despite
a radar configuration switch being set incorrectly.
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Yet even with this success, the Apollo flight software development process
encountered tremendous challenges [31], many of which would be quite familiar
to flight software teams of today:

– inadequate memory available for software to meet stated requirements,
– evolving requirements,
– unit software being delivered to integration without any unit testing,
– late software deliveries jeopardizing project schedule (even the launch dates),

and
– challenges in coordination between the teams distributed at NASA (Houston,

TX and Huntsville, AL) and MIT (Cambridge, MA).

The Apollo program mitigated these challenges using methods that would
be familiar to current flight software teams:

– revolutionary use of an interpreted ”higher order language” rather than ma-
chine or assembly code

– requirements driven software development,
– reduction in scope of the software (reducing the fidelity of the Earth model

used in lunar orbit, some attitude maneuver computations),
– development of significant infrastructure to support significant software test-

ing (e.g. hardware and software simulations),
– institution of change control boards to restrict scope changes, and
– mitigating the distributed teams by having key personnel spend time co-

location with other team elements.

In the end, the Apollo flight software delivered spectacularly, in no small
part because of the tremendously talented team. The lessons learned from the
Apollo flight software effort [31] would also come as no surprise to current flight
software practitioners:

– documentation is crucial,
– verification must proceed through several levels,
– requirements must be clearly defined and carefully managed,
– good development plans should be created and executed, and
– more programmers do not mean faster development.

The Apollo flight software can be considered the ”first” space autonomy flight
software. The verification and validation process for this consisted primarily of
extensive unit and system level testing. Although it is not described explicitly
as such [31], informal methods must also have been heavily used in the form of
code reviews and algorithm reviews.

But if we are to realize the incredible promise of autonomy in future space
missions [10], which relies on reliable, trusted, autonomy flight software, what are
the prospects for such software moving forward? We argue that all three major
elements of validation and verification techniques will be critical as we move into
an era of greater autonomy flight software: formal methods, informal methods,
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and testing. More precisely defined, verification typically refers to ensuring that
the software meets a specification and validation ensuring that the software
meets the customer/user needs. For the purposes of our discussion, the focus is
on verification but some elements of user studies, acceptance testing and informal
design reviews would also address validation. Also for the purposes of this paper
we use the following informal definitions.

Testing - exercising software artifacts - units, combinations of units, and system
level on inputs both within and beyond the design specifications.

Formal Methods - analytical and search based methods intended to prove spe-
cific positive or negative properties of software or algorithms. Examples formal
methods include model checking and static code analyzers.

Informal Methods - includes design reviews, code reviews, safety analysis, and
coding guidelines. Informal methods tend to be people and knowledge intensive
which is both a strength and a weakness. Some application of Formal Methods
that requires expert translation or re-implementation of an algorithm into a
different modelling language might best be considered hybrid formal/informal
methods with the manual translation being an informal method.

In the remainder of this paper, we first describe major autonomy software
that has been flown in space (including development of Mars 2020 Autonomy
Flight Software scheduled for deployment in 2023) and discuss the use of informal
methods, formal methods, and testing to Verify and Validate said software.

We then discuss the promise and the challenges in growing the role of formal
methods in developing increasingly robust, verified and validated autonomy flight
software.

2 Past Verification and Validation of Autonomy Flight
Software

While only a small fraction of space missions include significant autonomy flight
software, because of the large number of space missions there have been nu-
merous flights of autonomy software. In this section we survey prior flights of
autonomy/artificial intelligence software and describe the use of testing, informal
methods, and formal methods in their deployment.

2.1 Remote Agent Experiment

The Remote Agent Experiment (RAX) [30] flew a planner-scheduler, task ex-
ecutive, and mode identification and recovery software onboard NASA’s Deep
Space One mission for two periods totaling approximately 48 hours in 1999. RAX
represented the first spaceflight of significant AI software. RAX made extensive
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use of multiple software and hardware testbeds of varying fidelity [4] to Verify
and Validate the RAX software.

The verification and validation of the onboard planner used novel methods for
testing including definitions of test coverage, use of a logical domain specification
to check plans for correctness (derived from the planner model) and also checks
automatically derived from flight rules [33] [13].

RAX was not only a significant advance in autonomy but also demonstrated
significant use of formal methods for verification. Specifically, the executive was
verified pre-flight using the SPIN model checker which identified several con-
currency bugs [18]. Additionally, when an anomaly occurred during flight, an
experiment was conducted to use formal methods to isolate the issue in a java
surrogate for the flight code [17]. These successes are an excellent indicator of
the utility of formal methods for AI/Autonomy software.

2.2 Autonomous Sciencecraft on Earth Observing One

The Autonomous Sciencecraft (ASE) flew onboard the Earth Observing One
(EO-1) Mission and enables significant science-driven autonomy [9, 27]. ASE
flew the CASPER onboard planning system, the Spacecraft Command Language
(SCL) task executive, and also Onboard Data Analysis software (including Sup-
port Vector Machine Learning). ASE later flew the Livingston 2 (L2) Mode Iden-
tification and Recovery software as a further flight experiment but L2 was not
used operationally [19, 20]. ASE enabled onboard analysis of acquired imagery
and modification of the future mission plan to acquire more images based on im-
age analysis. ASE originally was slated as a 6 month technology demonstration,
but was so successful that it was approved for continued operational usage and
was the primary missions operation software for EO-1 for the remainder of the
mission 2004-2017 (over a dozen years). ASE represented flight of a considerable
code base (over 100 K source lines of code (SLOC), primarily in C++ and C.
Preparing this large code base for flight required overcoming significant software
issues including memory allocation and code image size [34].

ASE was verified and validated using a combination of informal methods,
formal methods, and testing [11]. Significant testing was performed on a range of
software and hardware platforms of varying fidelity and included: requirements-
based testing, unit testing, system-level testing, and scenario-based testing -
including nominal, off nominal, and extrema scenarios.

ASE made heavy use of informal methods as well. A safety review was con-
ducted studying over 80 potential ways in which incorrect operations could harm
the spacecraft. ASE used a layered software and operations architecture with
multiple redundant layers of: operations procedures, planner, executive, base
flight software, and hardware. Therefore every layer could be used to redun-
dantly enforce flight rules to protect the spacecraft. This layered architecture
was very effective in enabling reliable operations.

ASE Verification and Validation had limited use of formal methods. Multiple
static code checkers were used to check all ASE code. Automated code gener-
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ation was used to generate of SCL checks from CASPER activity and resource
specifications (this could be considered a form of runtime validation).

For a description of anomalies encountered during ASE operations and causes
see [35]. It is worth noting that the majority of these anomalies could be con-
sidered systems engineering issues that were manifested in software, not core
software errors (like pointer de-referencing or memory allocation issues).

2.3 WATCH/SPOTTER on Mars Exploration Rovers

WATCH/SPOTTER is image analysis software that was operationally qualified
on the Mars Exploration Rovers (MER) mission [5] (WATCH is the MER soft-
ware module name and SPOTTER is the name designated in publication(s)).
WATCH was tested at the unit and subsystem level on testbeds ranging from
workstation to the actual MER ground rover testbed. Informal methods were
also used: coding guidelines, code walkthroughs, and software design document
reviews. Standard code static analyzers were also applied as part of the project
standard software process.

2.4 AEGIS on MER, MSL, and M2020

AEGIS is software used on the MER, MSL, and M2020 rover missions that allows
the rover to acquire wide FOV imagery, find targets according to user specified
science criteria, and target with narrow FOV sensors. AEGIS was originally de-
veloped for the MER mission Mini-TES and Pancam instruments 1 [12], updated
for MSL with the Chemcam instrument [14], and is now in use on M2020 with the
SuperCam instrument. AEGIS represents a significant code base at just under
30K lines of source code (SLOC).

Prior to deployment on all three rover missions, AEGIS was subjected to
testing on testbeds ranging from workstations to actual ground rover testbeds.
Informal methods were also applied such as code walkthroughs, software module
reviews, and requirements analysis. Formal methods static code analyzers were
also used as part of the normal software development process.

2.5 MSL FSW

While technically not all autonomy software, the Mars Science Laboratory (MSL)
flight software development practices are worth considering as they represent the
state of the practice for flight software development [21].

MSL heavily used a range of informal methods to ensure software quality
including:

– risk-based coding rules (such as assertion density),
– design and code walkthroughs, and

1 Unfortunately the Mini-TES instrument failed before AEGIS-MER operational qual-
ification so AEGIS was never able to be used with Mini-TES on MER on Mars.
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– documentation requirements and reviews.

Notably, the MSL project automated checking of the above software require-
ments.

MSL also conducted an extensive testing program on testbeds ranging from
WSTS/linux workstation to flight testbeds.

Finally, MSL used formal methods in several ways. First, the SPIN model
checker was used to search for concurrency issues in critical multithreaded code
[21]. Second, significant amounts of code were automatically generated from
higher-level specifications (such as controllers from statecharts). Third, MSL
used the Coverity, Codesonar, Semmle, and Uno static code analyzers.

2.6 Intelligent Payload Experiment (IPEX)

IPEX [7] was a cubesat technology demonstration mission that demonstrated
high throughput onboard processing for the HyspIRI Intelligent Payload Module
(IPM) concept [8]. IPEX used the CASPER planner, a linux shell-based task
executive, and numerous onboard instrument analysis software modules.

IPEX followed the same software processes as ASE. However, because IPEX
was a much less complex spacecraft than EO-1 (specifically no active attitude
control) the overall operations constraints were less complex. For IPEX the
flight processor was running linux. This simplified the Verification and Vali-
dation process because there was very little difference between workstation and
flight testbed environments - greatly facilitating testing. As with ASE, unit and
system level testing, including nominal, off nominal, and extrema cases were
performed. Informal methods included code, software module, and safety-based
walkthroughs and reviews. Use of formal methods was limited to static code
analyzers.

3 Current Validation of Autonomy Software: Onboard
Planner for M2020

The Mars 2020 Mission is deploying an onboard scheduler to the Perseverance
rover as this paper goes to press (Spring 2022) with a target operational date in
2023. This onboard scheduler would control most of the activities of the rover -
including rover wake/sleep [32] [28]. This onboard scheduler must be fit within
limited rover computing resources [15]. The onboard scheduler also utilizes flexi-
ble execution (which can be viewed as taking on the role of an executive) [1] and
also supports a limited form of disjunction in plans [2]. The onboard planner rep-
resents a sizeable, complex code base at approximately 56K source lines of code
(SLOC). The ground-based version of the automated scheduler [36] also has an
explanation capability [3] to assist the ground operations team in understanding
possible plans and outcomes.

The onboard planner is being verified using a combination of testing, infor-
mal methods, and formal methods. Testing includes unit test, systems test, and
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scenario tests. Specifically scenario testing includes approximately 1 year of op-
erations data of the Perseverance rover since landing. Informal methods includes
code walkthroughs, coding guidelines and rules (see MSL above), as well as de-
sign reviews and software documentation. Finally, formal methods include the
use of static code analyzers as part of the M2020 software development process.

4 Discussion of Competing Verification and Validation
methods

In some sense, formal methods may be seen as more promising to achieve ro-
bust Verification and Validation to large scale, complex, autonomous systems.
Consider the weaknesses of Testing and Informal Methods.

4.1 Limitations of Testing and Informal Methods

Testing can only reveal bugs, it cannot prove a software artifact bug-free. Resid-
ual defect rate refers to the defect rate in released software (e.g. post validation).
Even the highly verified NASA space shuttle avionics software experienced 0.1
residual defects per KLOC [26] and leading-edge software companies experi-
ence a residual defect rate of 0.2 residual defects per KLOC [25]. A more broad
reliability survey showed a residual defect rate of 1.4 per KLOC [29] and a Mil-
itary system survey [6] showed a residual defect rate of 5-55 residual detects
per KLOC. Additionally, testing can be extremely expensive both in terms of
infrastructure (test drivers, simulators, oracles to evaluate tests) as well as time
and computing power.

Informal methods can leverage significant human expert knowledge but are
also incredibly time, labor, and expertise intensive and therefore add considerable
expense to the software validation process.

4.2 Limitations of Formal Methods

Given the considerable weaknesses of testing and informal methods, one might
consider why formal methods are not used. However consider the following chal-
lenges for application of formal methods to validation of autonomous space sys-
tems.

The Formal Specification Problem Typically in order to apply formal
methods, one needs three formal specifications: the target artifact, the algo-
rithm/semantics, and the conditions to check. For example, when analyzing a
computer program for race conditions, the target artifact is the program itself,
the algorithm/semantics are the semantics of the programming language, and
the conditions would be a formal specification of the ”race conditions” one wishes
to identify. If one is validating that a space system planner will generate valid
plans, the target artifact might be the planner model, the algorithm/semantics
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might be the target planner algorithm for generating plans, and the conditions
might be some specification of soundness or termination. The challenge of this
approach is twofold. First, it is a tremendous amount of effort to derive the
second and third specification, whose primary purpose is to enable the applica-
tion of the formal methods analysis. Second, even if one is able to derive these
specifications, they themselves are suspect and the process is only as good as
these input specifications. E.g. recursively one might require a Verification and
Validation process on these inputs as well.

The Representation Problem Formal methods are challenged by expressive
representations. Specifically, space applications are demanding in their require-
ments for: complex spatial representations of location, free space, pointing and
geometry; mixed discrete and continuous quantities and resources; and use of
multiple, variable resolution time systems. Any one of these presents consid-
erable challenges for formal methods, space applications often include most if
not all of these representational challenges simultaneously. On the other hand,
practical problems are typically propositional (or at least bounded instances) so
that the truly general representations (such as first order predicate logic) are
not strictly required. Still, in order for formal methods to make further headway
in Verification and Validation of space autonomous systems, further advances in
domain modelling capability are needed.

The Tractability Problem A formal methods proof that a property holds
often is achieved by exhaustive search of some execution space (such as proving
non concurrency of two elements may require searching the entire space of ele-
ment orderings). For many space autonomy problems complete search of such a
problem space is computationally intractable.

In some cases static source code analysis and logic model checking can been
used to study the dual problem. Instead of exhaustively searching a problem
space to prove a property, one searches in the problem space for violations of
the property. In this way, even partial search can identify issues in the code [23].
This in some ways is more akin to testing but can achieve much greater coverage
more rapidly (e.g. this approach can be considered a more efficient means of
testing). Unfortunately, such approaches suffer similar drawbacks as testing - eg
that they can only find issues and cannot (without complete search) indicate
that no such issues exist.

Note also that increasing computing capabilities and swarm-based distributed
methods of validation [24, 22] spread computational difficulties of these approaches
may be mitigated. However, because many of these search problems scale expo-
nentially om problem specification (e.g. code size) progress can be elusive.

The Expertise Problem Because of the above challenges, it often requires
considerable expertise to apply formal methods to good effect. For example,
the MSL concurrency analysis was performed by world class experts in formal
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methods. Because of the challenges described, one must not only be able to de-
velop formal specifications, but one must understand how to build specifications
that model the correct aspects of the application and are amenable to efficient
analysis (e.g. this deeper application of formal methods is far from out of the
box static code analyzers). In many respects, this is analogous to the situation
with autonomy for space applications, in which considerable expertise in soft-
ware, space, and operations is needed to develop and deploy critical autonomy
software.

5 Conclusions

This paper has discussed prospects for an increasing role for formal methods
in the verification and validation of autonomy flight software. We first surveyed
a number of prior and ongoing developments of autonomy flight software and
described their use of testing, informal methods, and formal methods. In all of
these cases, the bulk of the effort consisted of testing and informal methods. With
only a few notable exceptions (such as MSL code generation and Model checking
of critical code), usage of formal methods was restricted to use of static code
analyzers. We then discussed several challenges in application of formal methods
that restrict its usage: The Formal Specification Problem, The Representation
Problem, The Tractability Problem, and The Expertise Problem. Yet because of
the inherent limitations of testing and informal methods, we are still optimistic
and believe that formal methods are an essential tool in the development of space
autonomy software in the future.
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